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Abstract
A complete set of d + 1 mutually unbiased bases exists in a Hilbert space
of dimension d, whenever d is a power of a prime. We discuss a simple
construction of d + 1 disjoint classes (each one having d − 1 commuting
operators) such that the corresponding eigenstates form sets of unbiased bases.
Such a construction works properly for prime dimension. We investigate
an alternative construction in which the real numbers that label the classes
are replaced by a finite field having d elements. One of these classes is
diagonal, and can be mapped to cyclic operators by means of the finite Fourier
transform, which allows one to understand complementarity in a similar way as
for the position–momentum pair in standard quantum mechanics. The relevant
examples of two and three qubits and two qutrits are discussed in detail.

PACS numbers: 03.65.Ta, 03.65.Ca, 03.65.Ud, 03.67.−a

1. Introduction

The concept of complementarity is a direct non-trivial consequence of the superposition
principle and distinguishes purely quantum systems from those that may be accurately treated
classically. Therefore, a thorough understanding of this idea is of fundamental importance for
a correct interpretation of quantum mechanics [1].

In short, Bohr’s idea of complementarity could be loosely formulated by stating that, in
order to understand a quantum phenomenon completely we need a combination of mutually
exclusive properties: the precise knowledge of one of them implies that all possible outcomes
in the other are equally probable.

Perhaps the best textbook illustration of complementarity is that the observation of
interference and the knowledge of the path followed by the interfering particle are mutually
exclusive. This is often expressed as the statement that all quantum objects exhibit particle-
like or wave-like behaviour under different experimental conditions. Standard examples, such
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as the Einstein recoiling slit [2], Feynman light-scattering arrangement [3] or Heisenberg
microscope [4], are always explained in terms of position and momentum. It is thus natural
that links between canonical conjugacy and complementarity have been fully explored [5–7].

However, most if not all of the recent examples of complementarity involve finite-
dimensional systems (for a complete and up-to-date review, see [8]). Note that, contrary
to what one would expect, the finite dimensionality of the system space introduces difficulties
when dealing with uncertainty relations, because the commutators between complementary
observables are operators instead of c-numbers, which makes the analysis of the problem more
involved. The situation has been recently addressed for two-dimensional spaces [9]; however,
there are subtle aspects that are not fully revealed by these easy-to-understand systems.

In finite-dimensional systems, complementarity is tantamount to unbiasedness [10, 11]:
each eigenstate of any measurement is an equal-magnitude superposition of the eigenstates
of any of the complementary measurements. This leads naturally to the concept of mutually
unbiased bases (MUBs), which have recently been considered with an increasing interest
because of the central role they play not only in understanding complementarity [12–14],
but also in specific quantum information tasks, such as protocols of quantum cryptography
[15, 16], Wigner functions in discrete phase spaces [17, 18] or the so-called Mean King
problem [19–23].

For a d-dimensional system it has been found that the maximum number of MUBs cannot
be greater than d + 1 and this limit is reached if d is prime [24] or power of prime [25, 26].
Remarkably though, there is no known answer for any other values of d, not even for d = 6.
Recent works have suggested that the answer to this question may well be related with the
non-existence of finite projective planes of certain orders [27, 28] or with the problem of
mutually orthogonal Latin squares in combinatorics [29, 30].

Quite recently, a number of papers have addressed the explicit construction of MUBs for
dimensions that are prime or composite (i.e., power of a prime), exploiting different algebraic
properties [31–38]. In this paper, we give an explicit construction with a different method
that resorts to elementary notions of finite field theory. We wish to emphasize the distinct
features of our approach: first, we recall that complementarity for the position–momentum
pair is implemented by the Fourier transform, which exchanges both operators. Therefore, we
construct classes of maximally commuting operators and map them using the finite Fourier
transform and an additional diagonal operator. In consequence, we obtain in a systematic way
the whole family of complementary operators and not merely MUBs. Additionally, the final
expression for these MUBs is compact and can be immediately expressed in different bases,
in some of which they appear as tensor products of generalized Pauli matrices. In summary,
we hope that our unified construction provides a simple picture of complementarity for both
prime and composite dimensions.

2. Complementary operators in prime dimension

We consider a system living in a Hilbert space Hd , whose dimension d is a prime number. It
is useful to choose a computational basis |n〉 (where n = 0, . . . , d − 1) in Hd and introduce
the basic operators

X|n〉 = |n + 1〉, Z|n〉 = ωn|n〉, (2.1)

where

ω = exp(2π i/d) (2.2)

is a dth root of the unity and addition and multiplication must always be understood modulo d.
These operators X and Z, which are generalizations of the Pauli matrices, were studied by
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Patera and Zassenhaus [39] in connection with additive quantum numbers, and have been used
recently by many authors in a variety of applications [40–42]. They generate a group under
multiplication known as the generalized Pauli group and obey

ZX = ωXZ, (2.3)

which is the finite-dimensional version of the Weyl form of the commutation relations.
According to the ideas in [31], we can find d + 1 disjoint classes (each one having d − 1

commuting operators) such that the corresponding eigenstates form sets of MUBs. The explicit
construction starts with the following sets of operators:

{Zk}, k = 1, . . . , d − 1,

{(XZm)k}, k = 1, . . . , d − 1, m = 0, . . . , d − 1.
(2.4)

One can easily check that

Tr(ZkZk′ †) = dδkk′ , Tr(XkXk′ †) = dδkk′ ,

Tr[(XZm)k(XZm′
)k

′ †] = dδkk′δmm′ .
(2.5)

These pairwise orthogonality relations indicate that, for every value of m, we generate a
maximal set of d − 1 commuting operators and that all these sets are disjoint. In addition, the
common eigenstates of each set m form different elements of unbiased bases. We shall refer
to these classes as multicomplementary.

We would now like to make the very important observation that, starting from Z, it is
possible to obtain any element of the form (XZm)k by using a combination of only two
operators F and V defined as follows: F is the finite Fourier transform [43]

F = 1√
d

d−1∑
n,n′=0

ωnn′ |n〉〈n′|, (2.6)

and V is the diagonal transformation (assuming d is odd)

V =
d−1∑
n=0

ω−(n2−n)(d+1)/2|n〉〈n|. (2.7)

Indeed this is the case, since one easily verifies that

X = F †ZF, (2.8)

much in the spirit of the standard way of looking at complementary variables in the infinite-
dimensional Hilbert space: the position and momentum eigenstates are Fourier transform one
of the other. On the other hand, the diagonal transformation V acts as a Z-right shift:

XZm = V †mXV m. (2.9)

The case d = 2 needs minor modifications. In fact, it turns out that one cannot find a
diagonal unitary transformation V such that X �−→ XZ. For this reason, instead of XY the
matrix Y is defined as iXZ, so that Y = V †XV , where V is

V =
(

1 0
0 −i

)
. (2.10)

The construction of multicomplementary operators is otherwise identical to the case where d
is an odd prime.
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3. Complementary operators in composite dimensions

3.1. Constructing multicomplementary operators

For all its simplicity, the construction of the previous section fails if the dimension of the
system is a power of a prime. A simple illustration of this is obtained in dimension 4 = 22.
According to equation (2.1), the operators X and Z are simply

X =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 , Z =




1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i


 . (3.1)

Then, for instance, X2 = −(XZ2)2 and (XZ3) is proportional to XZ, so operators constructed
following (2.4) no longer form disjoint sets. The root of this failure can be traced to the fact
that Z4, the set of integers modulo 4, does not form an algebraic field. The same failure
generally occurs for any composite dimension d = pn, where p is a prime and n is an integer.
In short, the construction of multicomplementary operators cannot proceed by simply taking
powers of some basic elements.

However, when d = pn, we know there exists (up to isomorphisms) exactly one field,
written as Fd , with d elements. If d = p is prime, the field essentially coincides with Zp.
We briefly recall the minimum background needed to proceed. For more details, the reader
is referred to the pertinent literature [44]. The field Fd can be represented as the field of
equivalence classes of polynomials whose coefficients belong to Zp. The product in the
multiplicative group F

∗
d (i.e, excluding the zero) is defined as the product of the corresponding

polynomials modulo a primitive polynomial of degree n, irreducible in Zp. In fact, F
∗
d is a

cyclic group of order d − 1: it is generated by powers of a primitive element α, which is
a monic irreducible polynomial of degree n. This establishes a natural order for the field
elements, and we use this order to label the elements of a basis in Hd as follows:

{|0〉, |α〉, |α2〉, . . . , |αd−1〉}. (3.2)

Our solution to the problem of MUBs in composite dimension consists in using elements of
Fd , instead of natural numbers, to label the classes of complementary operators.

Next we define the trace of a field element θ ∈ Fd as

tr(θ) = θ + θp + θp2
+ · · · + θpn−1

. (3.3)

Note that we distinguish it from the trace of an operator by the lower case tr. The trace has
remarkably simple properties, the most important being that it is linear and that it is always an
element of the prime field Zp.

For the additive group in the field Fd we can introduce additive characters as a map that
fulfils

χ(θ1)χ(θ2) = χ(θ1 + θ2), θ1, θ2 ∈ Fd . (3.4)

These additive characters have the form

χ(θ) = exp

[
2π i

p
tr(θ)

]
. (3.5)

In subsequent calculations we shall need the property∑
θ∈Fd

χ(θ) = 0, (3.6)
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which leads to the relation
d−2∑
k=0

χ(αkθ) = dδθ,0 − 1. (3.7)

We start by introducing diagonal operators with respect to the basis (3.2) as follows:

Zq = |0〉〈0| +
d−1∑
k=1

χ(αq+k)|αk〉〈αk|, q = 0, . . . , d − 2. (3.8)

This definition implies

Zq |αk〉 = χ(αq+k)|αk〉, (3.9)

and the combination property

ZqZq ′ ≡ Z(q)+(q ′) = |0〉〈0| +
d−1∑
k=1

χ(αq+k + αq ′+k)|αk〉〈αk|. (3.10)

These are quite natural generalizations of the properties of matrices in the class {Zk} in (2.4),
since the |αk〉 are eigenstates of Zq .

In a similar fashion, the operators Xq are defined as

Xq =
d−1∑
k=1

|αk + αq〉〈αk| + |αq〉〈0|, q = 0, . . . , d − 2, (3.11)

so they act as operators shifting |αk〉 to |αk + αq〉 and satisfy the combination rule

XqXq ′ = X(q)+(q ′) = |αq + αq ′ 〉〈0| +
d−1∑
k=1

|αk + αq + αq ′ 〉〈αk|. (3.12)

Because elements of the field close under addition, αk + αq is another element in the field: it
must be that there is some number L(n), called the Jacobi logarithm, such that

αk + αq = αk+L(q−k), (3.13)

whenever αk + αq 
= 0. In applications, αk + αq can be found from the summation table
of Fd .

The finite Fourier transform F, when expressed in terms of the basis |αk〉, takes the form

F = 1√
d

[
|0〉〈0| +

d−1∑
k,k′=1

χ(αk′+k)|αk′ 〉〈αk| +
d−1∑
k=1

(|0〉〈αk| + |αk〉〈0|)
]

. (3.14)

This definition satisfies the natural property

F †F = FF † = I. (3.15)

The operator F is set up to transform the operators Zq into Xq :

Xq = F †ZqF. (3.16)

The Weyl form of the canonical commutation relations in Fd is now

ZqXq ′ = χ(αq+q ′
)Xq ′Zq. (3.17)

The operators Zq and Xq have been designed to be d-‘periodic’, in the sense that

Zd = Z0, Xd = X0. (3.18)
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In full analogy with the sets in (2.4), we can generate operators from Xq and Zq ; they
will be of the form XqZr . Linear independence and orthogonality are guaranteed, in the sense
that (compare equation (2.5))

Tr
(
ZqZ

†
q ′
) = dδqq ′ , Tr

(
XqX

†
q ′
) = dδqq ′ ,

Tr[(XqZr)(Xq ′Zr ′)†] = dδqq ′δrr ′ .
(3.19)

The commutation relations read

[XqZr,Xq ′Zr ′ ] = X(q)+(q ′)Z(r)+(r ′)[χ(αq ′+r ) − χ(αq+r ′
)]. (3.20)

It is clear from (3.19) and (3.20) that the sets (compare equation (2.4))

{Zq}, q = 0, . . . , d − 2,

{XqZq+r}, q, r = 0, . . . , d − 2,
(3.21)

are disjoint and that every element of a set with a fixed value r commutes with every other
element in the same set: they define multicomplementary operators.

Finally, let us consider the form of the diagonal operators similar to (2.9) transforming
Xq to XqZr . If we restrict to odd dimensions, we have

V (r)
q = |0〉〈0| +

d−1∑
k=1

χ̄ (2−1αr+2k−q)|αk〉〈αk|, q, r = 0, . . . , d − 2, (3.22)

where χ̄ means conjugate character and 2−1 is an element of Zp; in particular, if p = 2N + 1
we have 2−1 = N + 1. In this way, one can check that

V
(q)
q+r

†XqV
(q)
q+r = χ(2−1α2q+r )XqZq+r . (3.23)

Using (3.14) and (3.22) we can generate all the complementary bases. Indeed, if the
vectors |�α〉q are the eigenstates of Z0, then the whole set of complementary bases can be
obtained as follows:

V (0)
q

†F †|�α〉q . (3.24)

3.2. Complementary operators for two qubits

We illustrate our approach with the simplest case of a quantum system of composite
dimension: two qubits described in a four-dimensional Hilbert space H4. To construct
multicomplementary operators, we start from the field F4 containing four elements. The
polynomial

θ2 + θ + 1 = 0 (3.25)

is irreducible in Z2 and the primitive element α is defined as a root of (3.25). In consequence
the four elements of F4 as in (3.2) can be written as

{0, 1, α, α + 1}, (3.26)

where we have taken into account arithmetic modulo 2 and the fact that if α satisfies
equation (3.25), then we have the relations

α2 = α + 1, α3 = 1. (3.27)

A direct application of the definition (3.5) gives

χ(0) = 1, χ(α) = −1, χ(α2) = −1, χ(α3) = 1. (3.28)
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Using the representation where

|0〉 =




1
0
0
0


 , |α〉 =




0
1
0
0


 , |α2〉 =




0
0
1
0


 , |α3〉 =




0
0
0
1


 , (3.29)

the matrices Zq are

Z0 =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 , Z1 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 ,

Z2 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 .

(3.30)

The matrix realization of the Fourier transform is

F = 1

2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 , (3.31)

and the matrices Xq are

X0 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 , X1 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ,

X2 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 .

(3.32)

The rest of the sets are routinely obtained according to (3.21). For completeness we quote all
of them for this example:

X0Z0 =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 , X1Z1 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 ,

X2Z2 =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 ,

(3.33)
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X0Z1 =




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 , X1Z2 =




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


 ,

X2Z0 =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 ,

(3.34)

X0Z2 =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 , X1Z0 =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 ,

X2Z1 =




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


 .

(3.35)

3.3. Complementary operators for three qubits

Our next example is the case of three qubits, the Hilbert space of which is eight dimensional.
For the field F8 the primitive element α is a root of the following irreducible polynomial
on F2:

θ3 + θ + 1 = 0. (3.36)

In consequence, the elements of F8 according to (2.4) are

{0, 1, α, α2, α + 1, α2 + α, α2 + α + 1, α2 + 1}, (3.37)

where we have taken into account that

α3 = α + 1, α4 = α2 + α, α5 = α2 + α + 1, α6 = α2 + 1, α7 = 1.

(3.38)

One can obtain again the additive characters in a straightforward way

χ(0) = 1, χ(α) = 1, χ(α2) = 1, χ(α3) = −1,

χ(α4) = 1, χ(α5) = −1, χ(α6) = −1, χ(α7) = −1.
(3.39)

Using the basis labelling as in (3.29), the matrix of the Fourier transform is

F = 1√
23




1 1 1 1 1 1 1 1
1 1 −1 1 −1 −1 −1 1
1 −1 1 −1 −1 −1 1 1
1 1 −1 −1 −1 1 1 −1
1 −1 −1 −1 1 1 −1 1
1 −1 −1 1 1 −1 1 −1
1 −1 1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1 −1




. (3.40)
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The matrices Zq (q = 0, . . . , 6) are

Z0 = diag(1, 1, 1,−1, 1,−1,−1,−1), Z1 = diag(1, 1,−1, 1,−1,−1,−1, 1),

Z2 = diag(1,−1, 1,−1,−1,−1, 1, 1), Z3 = diag(1, 1,−1,−1,−1, 1, 1,−1),

Z4 = diag(1,−1,−1,−1, 1, 1,−1, 1), Z5 = diag(1,−1,−1, 1, 1,−1, 1,−1),

Z6 = diag(1,−1, 1, 1,−1, 1,−1,−1),

(3.41)

and, for instance,

X0 =




0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0




. (3.42)

The rest of them can be easily worked out.

3.4. Complementary operators for two qutrits

Our final example is the case of two qutrits, described in the nine-dimensional Hilbert space
H9. The primitive element of the field F9 is a root of the following irreducible polynomial
on F3:

θ2 + θ + 2 = 0, (3.43)

so that the elements of F9 are

{0, 1, 2, α, 2α + 1, 2α + 2, 2, 2α, α + 2, α + 1,}, (3.44)

and the additive characters are
χ(0) = 1, χ(α) = ω̄, χ(α2) = 1, χ(α3) = ω̄, χ(α4) = ω,

χ(α5) = ω, χ(α6) = 1, χ(α7) = ω, χ(α8) = ω̄,
(3.45)

where ω = e2π i/3 and the bar denotes complex conjugation. Using the same basis as (3.29),
we have that the matrix of the Fourier transform is

F = 1

3




1 1 1 1 1 1 1 1 1
1 1 ω̄ ω ω 1 ω ω̄ ω̄

1 ω̄ ω ω 1 ω ω̄ ω̄ 1
1 ω ω 1 ω ω̄ ω̄ 1 ω̄

1 ω 1 ω ω̄ ω̄ 1 ω̄ ω

1 1 ω ω̄ ω̄ 1 ω̄ ω ω

1 ω ω̄ ω̄ 1 ω̄ ω ω 1
1 ω̄ ω̄ 1 ω̄ ω ω 1 ω

1 ω̄ 1 ω̄ ω ω 1 ω ω̄




. (3.46)

The operators Zq take the form

Z0 = diag(1, ω̄, 1, ω̄, ω, ω, 1, ω, ω̄), Z1 = diag(1, 1, ω̄, ω, ω, 1, ω, ω̄, ω̄),

Z2 = diag(1, ω̄, ω, ω, 1, ω, ω̄, ω̄, 1), Z3 = diag(1, ω, ω, 1, ω, ω̄, ω̄, 1, ω̄),

Z4 = diag(1, ω, 1, ω, ω̄, ω̄, 1, ω̄, ω), Z5 = diag(1, 1, ω, ω̄, ω̄, 1, ω̄, ω, ω),

Z6 = diag(1, ω, ω̄, ω̄, 1, ω̄, ω, ω, 1), Z7 = diag(1, ω̄, ω̄, 1, ω̄, ω, ω, 1, ω).

(3.47)
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Note that Zq (q = 1, . . . , 7) are obtained from Z0 by a cyclic permutation of the diagonal
elements, except the first element that always remains 1. The Xq are also easily constructed,
and we have, e.g.

X0 =




0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0




. (3.48)

The diagonal operators Vq have the form

V0 = diag(1, 1, ω, 1, ω̄, 1, ω, 1, ω̄), V1 = diag(1, ω̄, ω, ω, ω̄, ω̄, ω, ω, ω̄),

V2 = diag(1, ω, 1, ω̄, 1, ω, 1, ω̄, 1), V3 = diag(1, ω, ω, ω̄, ω̄, ω, ω, ω̄, ω̄),

V4 = diag(1, 1, ω̄, 1, ω, 1, ω̄, 1, ω), V5 = diag(1, ω, ω̄, ω̄, ω, ω, ω̄, ω̄, ω),

V6 = diag(1, ω̄, 1, ω, 1, ω̄, 1, ω, 1), V7 = diag(1, ω̄, ω̄, ω, ω, ω̄, ω̄, ω, ω).

(3.49)

Note that all the complementary bases can be obtained directly from (3.24); i.e. applying VqF

to the basis (3.44).

4. Multicomplementary operators as tensor products

One can establish an isomorphism between form (3.21) of complementary operators and its
representation in terms of direct product of generalized Pauli operators (2.1). This isomorphism
can be put forward by showing a one-to-one correspondence between the basis (3.2) and the
coefficients of the expansion of the powers of the primitive element on, for instance, the
polynomial basis, formed by (1, α, α2, . . . , αn−1). In this way we get

αk �→ (
c
(k)
0 , c

(k)
1 , . . . , c

(k)
n−1

)
, c

(k)
l ∈ Zp, (4.1)

where

αk =
n−1∑
l=0

c
(k)
l αl. (4.2)

This allows us to rewrite the basis (3.2) in the equivalent form{|0〉, ∣∣c(k)
0 , c

(k)
1 , . . . , c

(k)
n−1

〉} ≡ {|0〉, ∣∣c(k)
0

〉∣∣c(k)
1

〉 · · · ∣∣c(k)
n−1

〉}
, (4.3)

and the representation of (3.21) as a tensor product is now possible. This is due to the fact that
Fd is isomorphic to Zp × · · · × Zp, with n products.

It is worth noting that this isomorphism can also be settled in other bases. For example,
the so-called normal basis, obtained finding an element β ∈ Fd such that{

β, βp, . . . , βpn−1}
(4.4)

is a basis of Fd , is quite useful in applications, since squaring a field element can be easily
accomplished by a right cyclic shift. Of course, different bases lead to different coefficients
c
(k)
l , different sets of commuting operators and different factorizations of these operators in

tensor products.
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4.1. Two qubits

To represent (3.30) and (3.32) as a tensor product we follow the described above and write the
basis (3.26) in form (4.3). This yields

|0〉 = |00〉, |α〉 = |01〉, |α2〉 = |11〉, |α3〉 = |10〉. (4.5)

Then,

Z0 �→ |00〉〈00| − |01〉〈01| − |11〉〈11| + |10〉〈10| = I ⊗ Z,

Z1 �→ |00〉〈00| − |01〉〈01| + |11〉〈11| − |10〉〈10| = Z ⊗ Z,

Z2 �→ |00〉〈00| + |01〉〈01| − |11〉〈11| − |10〉〈10| = Z ⊗ I,

(4.6)

where Z = |0〉〈0| − |1〉〈1|. In a similar way the representation of the Xk is

X0 �→ |11〉〈01| + |01〉〈11| + |00〉〈10| + |10〉〈00| = X ⊗ I,

X1 �→ |00〉〈01| + |10〉〈11| + |11〉〈10| + |01〉〈00| = I ⊗ X ,

X2 �→ |10〉〈01| + |00〉〈11| + |01〉〈10| + |11〉〈00| = X ⊗ X ,

(4.7)

where X = |0〉〈1| + |1〉〈0|, so that ZX = −XZ .
Note that such an asymmetrical correspondence is a result of the Fourier transform (3.31),

which is not factorized into a direct product of two Fourier operators. The other complementary
operators are obtained as a simple product of (4.6) and (4.7):

(X0Z0, X1Z1, X2Z2) �→ (X ⊗ Z,Z ⊗ Y,Y ⊗ X ),

(X0Z1, X1Z2, X2Z0) �→ (Y ⊗ Z,Z ⊗ X ,X ⊗ Y),

(X0Z2, X1Z0, X2Z1) �→ (Y ⊗ I, I ⊗ Y,Y ⊗ Y),

(4.8)

where Y = XZ .
We complete this example using the normal basis {β, β2}, with α = β, α2 = β2, α3 =

β + β2. Then

|0〉 = |00〉, |α〉 = |10〉, |α2〉 = |01〉, |α3〉 = |11〉, (4.9)

and the new tensor product representatives are

Z0 �→ Z ⊗ Z, X0 �→ X ⊗ X ,

Z1 �→ Z ⊗ I, X1 �→ X ⊗ I,

Z2 �→ I ⊗ Z, X2 �→ I ⊗ X ,

(4.10)

while the rest of complementary operators are given by

(X0Z0, X1Z1, X2Z2) �→ (Y ⊗ Y,Y ⊗ I, I ⊗ Y),

(X0Z1, X1Z2, X2Z0) �→ (Y ⊗ Z,Z ⊗ X ,X ⊗ Y),

(X0Z2, X1Z0, X2Z1) �→ (Z ⊗ X ,Y ⊗ X ,X ⊗ Z).

(4.11)

The symmetrical aspect of (4.10) is a consequence of the factorization of Fourier transform in
this basis. In fact, we have

F = F2 ⊗ F2, (4.12)

with

F2 = 1√
2
(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|). (4.13)
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4.2. Three qubits

Mapping to tensor product form is obtained for this case in a manner similar to F4, by
establishing a correspondence between the bases (3.2) and (4.3). Taking into account (3.37)
we obtain (by expanding over the polynomial basis {1, α, α2}):
|0〉 = |000〉, |α〉 = |010〉, |α2〉 = |001〉, |α3〉 = |110〉,
|α4〉 = |011〉, |α5〉 = |111〉, |α6〉 = |101〉, |α7〉 = |100〉. (4.14)

In this way one gets

Z0 �→ Z ⊗ I ⊗ I, X0 �→ X ⊗ I ⊗ I ;
Z1 �→ I ⊗ I ⊗ Z, X1 �→ I ⊗ X ⊗ I ;
Z2 �→ I ⊗ Z ⊗ I, X2 �→ I ⊗ I ⊗ X ;
Z3 �→ Z ⊗ I ⊗ Z, X3 �→ X ⊗ X ⊗ I ;
Z4 �→ I ⊗ Z ⊗ Z, X4 �→ I ⊗ X ⊗ X ;
Z5 �→ Z ⊗ Z ⊗ Z, X5 �→ X ⊗ X ⊗ X ;
Z6 �→ Z ⊗ Z ⊗ I, X6 �→ X ⊗ I ⊗ X ,

(4.15)

where the operators Z and X are those of the two-qubit example.
The other sets of commutative operators are as follows:

{XqZq} �→ (YII, IXZ, IZX ,YXZ, IYY,YYY,YZX ),

{XqZq+1} �→ (X IZ, IYI,ZIY,XYZ,ZYY,YYX ,YIX ),

{XqZq+2} �→ (XZI,ZXZ, IZY,YYZ,ZYX ,YXX ,X IY),

{XqZq+3} �→ (YIZ, IYZ,ZZY,YYI,ZXX ,XXY,XZX ),

{XqZq+4} �→ (XZZ,ZYZ,ZZX ,YX I, IXY,XYX ,YIY),

{XqZq+5} �→ (YZZ,ZYI,ZIX ,XXZ, IYX ,YXY,XZY),

{XqZq+6} �→ (YZI,ZX I, IIY,XYI,ZXY,XYY,YZY),

(4.16)

where q = 0, . . . , 6 and we have omitted the symbol ⊗ to simplify the writing. Again the
Fourier transform is not factorized in this basis, but it is possible to find a different basis where
F factorizes.

4.3. Two qutrits

The representation of Zq and Xq operators in terms of tensor product is obtained using the
expansion in the polynomial basis {1, α}:
|0〉 = |00〉, |α〉 = |01〉, |α2〉 = |12〉, |α3〉 = |22〉, |α4〉 = |20〉,
|α5〉 = |02〉, |α6〉 = |21〉, |α7〉 = |11〉, |α8〉 = |10〉, (4.17)

which leads to

Z0 �→ Z2Z2; X0 �→ X I ;
Z1 �→ Z2I, X1 �→ IX ;
Z2 �→ IZ2, X2 �→ XX 2;
Z3 �→ Z2Z, X3 �→ X 2X 2,

Z4 �→ ZZ, X4 �→ X 2I,

Z5 �→ ZI, X5 �→ IX 2;
Z6 �→ IZ, X6 �→ X 2X ,

Z7 �→ ZZ2, X7 �→ XX ,

(4.18)
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where now

Z = |0〉〈0| + ω|1〉〈1| + ω̄|2〉〈2|, X = |1〉〈0| + |2〉〈1| + |0〉〈2|, (4.19)

so (2.1) holds, since ZX = ωXZ .
The sets of commutative operators are

{XqZq} �→ (WZ2,Z2X ,XY2,Y2W2,W2Z,ZX 2,X 2Y,YW),

{XqZq+1} �→ (WI, IW,WW2,W2W2,W2I, IW2,W2W,WW),

{XqZq+2} �→ (XZ2,Z2Y,YW2,W2X 2,X 2Z,ZY2,Y2W,WX ),

{XqZq+3} �→ (WZ,ZY,YX 2,X 2W2,W2Z2,Z2Y2,Y2X ,XW),

{XqZq+4} �→ (YZ,ZX ,XW2,W2Y2,Y2Z2,Z2X 2,X 2W,WY),

{XqZq+5} �→ (YI, IY,YY2,Y2Y2,Y2I, IY2,Y2Y,YY),

{XqZq+6} �→ (XZ,ZW,WY2,Y2X 2,X 2Z2,Z2W2,W2Y,YX ),

{XqZq+7} �→ (YZ2,Z2W,WX 2,X 2Y2,Y2Z,ZW2,W2X ),

(4.20)

where q = 0, . . . , 7,Y = XZ,W = XZ2 and we have omitted global phases that appear in
the product of operators. Note that the above sets of commuting operators are different from
those listed in [34].

5. Concluding remarks

In this paper, we have solved the problem of existence and construction of sets of MUBs in
composite dimensions. Inspired by the the approach developed in [31], in which an interesting
explicit construction was shown for prime dimension, we have used algebraic field extensions
to produce a solution for composite dimensions. Although other constructive algorithms for
solving the MUBs problem in composite dimension have appeared, the one presented here
does not resort to dual basis, and so is completely analogous to the prime-dimensional case.
We have also provided a simple scheme to cast the sets of MUBs observables as tensor products
of generalized Pauli matrices. These tensor products can be quite different when we represent
the finite field in different bases.

Another major advantage of our approach relies on the use of the finite Fourier transform
and a diagonal shift operator as maps between maximal classes of commuting operators. This
is in full agreement with our understanding of complementarity in the infinite-dimensional
case.

Of course, there are still open questions: the non-prime dimensional case is a challenging
issue, or what happens in the limit of high dimensions. In any case, the picture developed
in this paper is a valuable tool to deal with concepts such as entanglement or separability in
finite-dimensional systems.
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